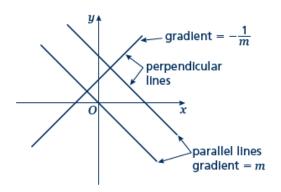
edexcel


Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation y = mx + c has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

y = 2x + 4 $m = 2$	1 As the lines are parallel they have the same gradient.			
y = 2x + c	2 Substitute $m = 2$ into the equation of a straight line $y = mx + c$.			
$9 = 2 \times 4 + c$	3 Substitute the coordinates into the equation $y = 2x + c$			
9 = 8 + c c = 1	4 Simplify and solve the equation.			
y = 2x + 1	5 Substitute $c = 1$ into the equation y = 2x + c			

Example 2 Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5).

y = 2x - 3 m = 2 $-\frac{1}{m} = -\frac{1}{2}$	1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
$y = -\frac{1}{2}x + c$	2 Substitute $m = -\frac{1}{2}$ into $y = mx + c$.
$5 = -\frac{1}{2} \times (-2) + c$	3 Substitute the coordinates (-2, 5) into the equation $y = -\frac{1}{2}x + c$
5 = 1 + c c = 4	4 Simplify and solve the equation.
$y = -\frac{1}{2}x + 4$	5 Substitute $c = 4$ into $y = -\frac{1}{2}x + c$.

Example 3 A line passes through the points (0, 5) and (9, -1).Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$x_1 = 0, x_2 = 9, y_1 = 5 \text{ and } y_2 = -1$	1 Substitute the coordinates into the
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{9 - 0}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
$=\frac{-6}{9}=-\frac{2}{3}$	the gradient of the line.
$-\frac{1}{m} = \frac{3}{2}$	2 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{2}$.
$y = \frac{3}{2}x + c$	3 Substitute the gradient into the equation $y = mx + c$.
Midpoint = $\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$	4 Work out the coordinates of the midpoint of the line.
$2 = \frac{3}{2} \times \frac{9}{2} + c$	5 Substitute the coordinates of the midpoint into the equation.
$c = -\frac{19}{4}$	6 Simplify and solve the equation.
$y = \frac{3}{2}x - \frac{19}{4}$	7 Substitute $c = -\frac{19}{4}$ into the equation
	$y = \frac{3}{2}x + c \; .$

Practice

- 1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
 - ay = 3x + 1 (3, 2)by = 3 2x (1, 3)c2x + 4y + 3 = 0 (6, -3)d2y 3x + 2 = 0 (8, 20)
- 2 Find the equation of the line perpendicular to $y = \frac{1}{2}x 3$ which passes through the point (-5, 3). Hint If $m = \frac{a}{b}$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$
- **3** Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
 - **a** y = 2x 6 (4, 0) **b** $y = -\frac{1}{3}x + \frac{1}{2}$ (2, 13) **c** x - 4y - 4 = 0 (5, 15) **d** 5y + 2x - 5 = 0 (6, 7)

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.

a (4, 3), (-2, -9) **b** (0, 3), (-10, 8)

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.

	y = 2x + 3 $y = 2x - 7$		y = 3x $2x + y - 3 = 0$	C	y = 4x - 3 $4y + x = 2$
d	3x - y + 5 = 0	e	2x + 5y - 1 = 0	f	2x - y = 6

- **d** 3x y + 5 = 0x + 3y = 1**e** 2x + 5y - 1 = 0y = 2x + 7**f** 2x - y = 66x - 3y + 3 = 0
- 6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.
 - **a** Find the equation of L_1 in the form ax + by + c = 0
 - The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3). **b** Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

c Find an equation of L_3

edexcel

Answers

- 1 a y = 3x 7 b y = -2x + 5c $y = -\frac{1}{2}x$ d $y = \frac{3}{2}x + 8$ 2 y = -2x - 73 a $y = -\frac{1}{2}x + 2$ b y = 3x + 7c y = -4x + 35 d $y = \frac{5}{2}x - 8$ 4 a $y = -\frac{1}{2}x$ b y = 2x5 a Parallel b Neither c d Perpendicular e Neither f
- **6 a** x + 2y 4 = 0 **b** x + 2y + 2 = 0 **c** y = 2x

Perpendicular

Parallel

