

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \ne 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is ac.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all of
$5x^2 - 15x = 0$	the terms are on one side of the equation and it is equal to zero.
	Do not divide both sides by x as this would lose the solution $x = 0$.
5x(x-3)=0	2 Factorise the quadratic equation.
So $5x = 0$ or $(x - 3) = 0$	5x is a common factor.When two values multiply to make
	zero, at least one of the values must
	be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$$x^{2} + 7x + 12 = 0$$

$$b = 7, ac = 12$$

$$x^{2} + 4x + 3x + 12 = 0$$

$$x(x + 4) + 3(x + 4) = 0$$

$$x(x + 4)(x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x + 4) = 0 \text{ or } (x + 3) = 0$$

$$x(x +$$

Example 3 Solve $9x^2 - 16 = 0$

$$9x^2 - 16 = 0$$
$$(3x + 4)(3x - 4) = 0$$

So
$$(3x + 4) = 0$$
 or $(3x - 4) = 0$

$$x = -\frac{4}{3}$$
 or $x = \frac{4}{3}$

- 1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3x)^2$ and $(4)^2$.
- 2 When two values multiply to make zero, at least one of the values must be zero.
- 3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

$$b = -5$$
, $ac = -24$

So
$$2x^2 - 8x + 3x - 12 = 0$$

$$2x(x-4) + 3(x-4) = 0$$

$$(x-4)(2x+3) = 0$$

So
$$(x-4) = 0$$
 or $(2x+3) = 0$

$$x = 4$$
 or $x = -\frac{3}{2}$

- 1 Factorise the quadratic equation. Work out the two factors of ac = -24 which add to give you b = -5. (-8 and 3)
- 2 Rewrite the *b* term (-5*x*) using these two factors.
- **3** Factorise the first two terms and the last two terms.
- 4 (x-4) is a factor of both terms.
- 5 When two values multiply to make zero, at least one of the values must be zero.
- **6** Solve these two equations.

Practice

1 Solve

- **a** $6x^2 + 4x = 0$
- \mathbf{c} $x^2 + 7x + 10 = 0$
- $e x^2 3x 4 = 0$
- $\mathbf{g} \qquad x^2 10x + 24 = 0$
- \mathbf{i} $x^2 + 3x 28 = 0$
- $\mathbf{k} \quad 2x^2 7x 4 = 0$

- **b** $28x^2 21x = 0$
- **d** $x^2 5x + 6 = 0$
- \mathbf{f} $x^2 + 3x 10 = 0$
- **h** $x^2 36 = 0$
- \mathbf{j} $x^2 6x + 9 = 0$
- $1 3x^2 13x 10 = 0$

2 Solve

- **a** $x^2 3x = 10$
- **c** $x^2 + 5x = 24$
- \mathbf{e} x(x+2) = 2x + 25
- \mathbf{g} $x(3x+1) = x^2 + 15$
- **b** $x^2 3 = 2x$
- **d** $x^2 42 = x$
- \mathbf{f} $x^2 30 = 3x 2$
- **h** 3x(x-1) = 2(x+1)

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x+q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$x^{2} + 6x + 4 = 0$$

$$(x+3)^{2} - 9 + 4 = 0$$

$$(x+3)^{2} - 5 = 0$$

$$(x+3)^{2} = 5$$

$$x+3 = \pm\sqrt{5}$$

$$x = \pm\sqrt{5} - 3$$
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$

- 1 Write $x^2 + bx + c = 0$ in the form $\left(x + \frac{b}{2}\right)^2 \left(\frac{b}{2}\right)^2 + c = 0$
- 2 Simplify.
- 3 Rearrange the equation to work out *x*. First, add 5 to both sides.
- 4 Square root both sides. Remember that the square root of a value gives two answers.
- 5 Subtract 3 from both sides to solve the equation.
- **6** Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$$2x^{2} - 7x + 4 = 0$$

$$2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$$

$$2\left[\left(x - \frac{7}{4}\right)^{2} - \left(\frac{7}{4}\right)^{2}\right] + 4 = 0$$

$$2\left(x - \frac{7}{4}\right)^{2} - \frac{49}{8} + 4 = 0$$

 $2\left(x-\frac{7}{4}\right)^2-\frac{17}{8}=0$

1 Before completing the square write
$$ax^2 + bx + c$$
 in the form $a\left(x^2 + \frac{b}{a}x\right) + c$

2 Now complete the square by writing
$$x^2 - \frac{7}{2}x$$
 in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$

- **3** Expand the square brackets.
- 4 Simplify.

(continued on next page)

$$2\left(x - \frac{7}{4}\right)^2 = \frac{17}{8}$$

$$\left(x - \frac{7}{4}\right)^2 = \frac{17}{16}$$

$$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$$

$$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$$

So
$$x = \frac{7}{4} - \frac{\sqrt{17}}{4}$$
 or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$

- 5 Rearrange the equation to work out x. First, add $\frac{17}{8}$ to both sides.
- 6 Divide both sides by 2.
- 7 Square root both sides. Remember that the square root of a value gives two answers.
- 8 Add $\frac{7}{4}$ to both sides.
- **9** Write down both the solutions.

Practice

3 Solve by completing the square.

a
$$x^2 - 4x - 3 = 0$$

$$\mathbf{c}$$
 $x^2 + 8x - 5 = 0$

$$e 2x^2 + 8x - 5 = 0$$

Solve by completing the square.

a
$$(x-4)(x+2) = 5$$

b
$$2x^2 + 6x - 7 = 0$$

$$x^2 - 5x + 3 = 0$$

- **b** $x^2 10x + 4 = 0$
- **d** $x^2 2x 6 = 0$
- $\mathbf{f} \qquad 5x^2 + 3x 4 = 0$

Hint

Get all terms onto one side of the equation.

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for a, b and c.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$$a = 1, b = 6, c = 4$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$$

$$x = \frac{-6 \pm \sqrt{20}}{2}$$
3 Si th definition of the content of the c

$$x = \frac{-6 \pm 2\sqrt{5}}{2}$$
$$x = -3 \pm \sqrt{5}$$

So
$$x = -3 - \sqrt{5}$$
 or $x = \sqrt{5} - 3$

1 Identify
$$a$$
, b and c and write down the formula.
Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over $2a$, not just part of it.

- 2 Substitute a = 1, b = 6, c = 4 into the formula.
- 3 Simplify. The denominator is 2, but this is only because a = 1. The denominator will not always be 2.
- 4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
- 5 Simplify by dividing numerator and denominator by 2.
- **6** Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$$a = 3, b = -7, c = -2$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$$

$$x = \frac{7 \pm \sqrt{73}}{6}$$

$$x = \frac{7 \pm \sqrt{73}}{6}$$
So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$

1 Identify a, b and c, making sure you get the signs right and write down the formula.

Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2a, not just part of it.

2 Substitute a = 3, b = -7, c = -2 into the formula.

Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2.

4 Write down both the solutions.

Practice

Solve, giving your solutions in surd form.

a
$$3x^2 + 6x + 2 = 0$$

b
$$2x^2 - 4x - 7 = 0$$

Solve the equation $x^2 - 7x + 2 = 0$

Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where a, b and c are integers.

Solve $10x^2 + 3x + 3 = 5$ 7 Give your solution in surd form. Hint

Get all terms onto one side of the equation.

Extend

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.

a
$$4x(x-1) = 3x-2$$

b
$$10 = (x+1)^2$$

$$\mathbf{c}$$
 $x(3x-1)=10$

Answers

1 **a**
$$x = 0$$
 or $x = -\frac{2}{3}$

$$\mathbf{c}$$
 $x = -5 \text{ or } x = -2$

e
$$x = -1$$
 or $x = 4$

$$y = x = 4 \text{ or } x = 6$$

i
$$x = -7 \text{ or } x = 4$$

k
$$x = -\frac{1}{2}$$
 or $x = 4$

2 **a**
$$x = -2$$
 or $x = 5$

c
$$x = -8 \text{ or } x = 3$$

e
$$x = -5 \text{ or } x = 5$$

g
$$x = -3 \text{ or } x = 2\frac{1}{2}$$

b
$$x = 0 \text{ or } x = \frac{3}{4}$$

d
$$x = 2 \text{ or } x = 3$$

f
$$x = -5 \text{ or } x = 2$$

h
$$x = -6 \text{ or } x = 6$$

$$\mathbf{j}$$
 $x=3$

1
$$x = -\frac{2}{3}$$
 or $x = 5$

b
$$x = -1 \text{ or } x = 3$$

d
$$x = -6 \text{ or } x = 7$$

f
$$x = -4 \text{ or } x = 7$$

h
$$x = -\frac{1}{3}$$
 or $x = 2$

3 **a**
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$

3 a
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$

c
$$x = -4 + \sqrt{21}$$
 or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$

e
$$x = -2 + \sqrt{6.5}$$
 or $x = -2 - \sqrt{6.5}$ **f** $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$ **b** $x = \frac{-3 + \sqrt{23}}{2}$ or $x = \frac{-3 - \sqrt{23}}{2}$

$$\mathbf{c}$$
 $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$ **b** $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

b
$$x = 1 + \frac{3\sqrt{2}}{2}$$
 or $x = 1 - \frac{3\sqrt{2}}{2}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 **a**
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$

b
$$x = -1 + \sqrt{10}$$
 or $x = -1 - \sqrt{10}$

c
$$x = -1\frac{2}{3}$$
 or $x = 2$