

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\bullet \qquad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25}\times\sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=5\times\sqrt{2}$	3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$ $=3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$$(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$$

$$= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$$

$$= 7 - 2$$

$$= 5$$

- 1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
- 2 Collect like terms:

$$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$$
$$= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{1 \times \sqrt{3}}{\sqrt{9}}$$

- 1 Multiply the numerator and denominator by $\sqrt{3}$
- 2 Use $\sqrt{9} = 3$

Example 5 Rationalise and simplify
$$\frac{\sqrt{2}}{\sqrt{12}}$$

$$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$
$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

1 Multiply the numerator and denominator by
$$\sqrt{12}$$

$$=\frac{\sqrt{2}\times\sqrt{4\times3}}{12}$$

2 Simplify
$$\sqrt{12}$$
 in the numerator.
Choose two numbers that are factors of 12. One of the factors must be a square number

$$=\frac{2\sqrt{2}\sqrt{3}}{12}$$

3 Use the rule
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

4 Use $\sqrt{4} = 2$

$$=\frac{\sqrt{2}\sqrt{3}}{6}$$

$$\frac{2}{12}$$
 simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$$

$$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$$

$$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$$

$$=\frac{6-3\sqrt{5}}{-1}$$

$$=3\sqrt{5}-6$$

- 1 Multiply the numerator and denominator by $2 \sqrt{5}$
- 2 Expand the brackets
- 3 Simplify the fraction
- 4 Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1

Practice

- 1 Simplify.
 - a $\sqrt{45}$
 - $c \sqrt{48}$
 - $e \sqrt{300}$
 - $\mathbf{g} = \sqrt{72}$

- **b** $\sqrt{125}$
- **d** $\sqrt{175}$
- $\mathbf{f} = \sqrt{28}$
- **h** $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

- 2 Simplify.
 - **a** $\sqrt{72} + \sqrt{162}$
 - c $\sqrt{50} \sqrt{8}$
 - e $2\sqrt{28} + \sqrt{28}$

- **b** $\sqrt{45} 2\sqrt{5}$
- **d** $\sqrt{75} \sqrt{48}$
- **f** $2\sqrt{12} \sqrt{12} + \sqrt{27}$

Watch out!

Check you have chosen the highest square number at the start.

- **3** Expand and simplify.
 - a $(\sqrt{2} + \sqrt{3})(\sqrt{2} \sqrt{3})$
- **b** $(3+\sqrt{3})(5-\sqrt{12})$
- c $(4-\sqrt{5})(\sqrt{45}+2)$
- **d** $(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$

$$\mathbf{b} \qquad \frac{1}{\sqrt{11}}$$

c
$$\frac{2}{\sqrt{7}}$$

$$\mathbf{d} \qquad \frac{2}{\sqrt{8}}$$

$$e \frac{2}{\sqrt{2}}$$

$$\mathbf{f} = \frac{5}{\sqrt{5}}$$

$$\mathbf{g} = \frac{\sqrt{8}}{\sqrt{24}}$$

$$\mathbf{h} = \frac{\sqrt{5}}{\sqrt{45}}$$

5 Rationalise and simplify.

$$\mathbf{a} \qquad \frac{1}{3-\sqrt{5}}$$

$$\mathbf{b} \qquad \frac{2}{4+\sqrt{3}}$$

$$\mathbf{c} = \frac{6}{5-\sqrt{2}}$$

Extend

6 Expand and simplify
$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})$$

7 Rationalise and simplify, if possible.

$$\mathbf{a} \qquad \frac{1}{\sqrt{9} - \sqrt{8}}$$

$$\mathbf{b} = \frac{1}{\sqrt{x} - \sqrt{y}}$$

Answers

 $3\sqrt{5}$ 1 a

 $4\sqrt{3}$

e $10\sqrt{3}$

 $6\sqrt{2}$

2 a $15\sqrt{2}$

 $3\sqrt{2}$

6√7

3 a −1

c $10\sqrt{5}-7$

4 a $\frac{\sqrt{5}}{5}$

 $\mathbf{c} \qquad \frac{2\sqrt{7}}{7}$

 $\mathbf{e} \qquad \sqrt{2}$ $\mathbf{g} \qquad \frac{\sqrt{3}}{3}$

5 **a** $\frac{3+\sqrt{5}}{4}$

6 x-y

7 **a** $3+2\sqrt{2}$

5√5 b

5√7

 $2\sqrt{7}$

 $9\sqrt{2}$

 $\sqrt{5}$ b

d $\sqrt{3}$

5√3

 $9 - \sqrt{3}$ b

 $26-4\sqrt{2}$

 $\frac{\sqrt{11}}{11}$ b

 $\frac{\sqrt{2}}{2}$ d

 $\sqrt{5}$

h $\frac{1}{3}$

 $\frac{2(4-\sqrt{3})}{13}$

c $\frac{6(5+\sqrt{2})}{23}$

 $\mathbf{b} \qquad \frac{\sqrt{x} + \sqrt{y}}{x - y}$